

Heavy quark "Energy loss" and "Flow" in a QCD matter at RHIC

STRANGENESS IN QUARK MATTER

24 - 29 June 2007

Levoča, Slovakia

DongJo,Kim for PHENIX collaboration Jyväskylä University, Finland

Motivation (I)

Why do we measure heavy quarks (charm/bottom)?

- In p+p collisions:
 - Important test of pQCD. Can pQCD predict charm production(LO, NLO)?
 - Base line analysis for d+Au and Au+Au
- In d+Au collisions:
 - Study of "cold" nuclear matter effect (Gluon Saturation/CGC,[shadowing], Cronin effect)
- In A+A collisions:
 - Medium modification effects (energy loss, collective flow)
 - Important baseline of J/ψ

Why Heavy Quarks?

- Heavy quarks (charm and beauty) produced early in the collision. Live long enough to sample the plasma
- Intrinsic large mass scale allows precise calculations

 What can we look in order to find out the characteristics or properties of the medium(QGP)
- © Comparison between light and heavy quark suppression distinguishes between theoretical models of energy loss in the QGP

 → Charm vs Light quark energy loss (Jet-Quenching)
 - Mass dependence of diffusion of heavy quarks determines plasma
 - properties, e.g. viscosity and conductivity \rightarrow Charm flow

Analysis

We use two different methods to determine the non-photonic electron contribution (Inclusive = photonic + non-photonic)

- Cocktail subtraction calculation of "photonic" electron background from all known sources
- Converter subtraction—extraction of "photonic" electron background by special run with additional converter (X = 1.7%)

Systematics

- Cocktail and converter analysis agrees very well
- Low pT : Cocktail
- High pT : Converter
- S/B > 1 for $p_T > 1$ GeV/c

Open Charm in p+p at \sqrt{s} =200 GeV

- $\sigma_{cc} = 567 \pm 57(\text{stat}) \pm 224(\text{sys}) \,\mu \text{b}$
- Central value for NLO predictions by M.Cacciari underpredicts the data by 1.7
- pQCD next order corrections usually comparable with error bars on the previous order calculations

Heavy Flavor in Au+Au 200GeV

PRL. 98, 172301 (2007)

No suppression at low p_T

Suppression observed for $p_T>3.0$ GeV/c, smaller than for light quarks.

Motivation(II)

pQCD jet quenching:

- One of the most celebrated results: issues
 - R_{AA} is of limited value for medium tomography
 - need better constraints on medium modeling : γ-h correlation
- Similar suppression pattern of high- p_T electrons from semi-leptonic D and B mesons decays as π^0 ; PRL 91, 172302 (2003);
 - how much elastic energy loss is playing a role? $R_{AA}^{c-quark} \approx R_{AA}^{u,d}$
 - ✓ in addition to radiative energy loss?
 - \checkmark elastic energy loss is well known for π^0
 - α_s is playing a role on energy loss?
 - how much for radiative and elastic energy loss? $(\Delta E^{\text{radative}} \propto \alpha_s^3, \Delta E^{\text{elastic}} \propto \alpha_s^2 \text{ (ref)})$
 - \checkmark α_s in the medium ? [A.Peshier hep-th/0605294]
 - how modeling on medium is well known?
 - ✓ Medium tomography: *T. Renk, K. Eskola* hep-ph/0610059

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

Measured for:

variety of species

$$\pi^{0}$$
, π^{\pm} , η , γ_{dir} , p, K_{S} , ϕ , ω , J/ψ , Ω ...

and CMS energies

$$\sqrt{s}$$
=17, 22.4, 62.4, 130, 200 GeV/c

Jet quenching - one of the most celebrated results. Light mesons suppressed by factor of 5, direct- γ unsuppressed => FS nature of observed suppression. Data successfully described by pQCD models.

Baier, Schiff and Zakharov, AnnRevNuclPartSci 50, 37 (2000)

Transp. Coef. Scatt. power of QCD med:

Density of scattering centers

Range of color force

$$\hat{q} = \rho \int q^2 dq^2 \frac{d\sigma}{dq^2} = \rho \sigma \left\langle k_{\rm T}^2 \right\rangle = \frac{\mu^2}{\lambda_f}$$

Is R_{AA} sensitive to $P(\Delta E, E)$?

T. Renk, K. Eskola et al.

 R_{AA} uniquely determined by $p_{had} = p_{part} \otimes \langle P(\Delta E, E) \rangle \otimes D_{f \to \pi}^{vac}(z, \mu_F^2)$

The E-loss probability can be defined:

$$\left\langle P(\Delta E, E) \right\rangle_{TAA} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi \int_{-\infty}^{\infty} dx_{0} \int_{-\infty}^{\infty} dy_{0} P(x_{0}, y_{0}) P(\Delta E, E)_{path}$$

Where hard vertices $P(x_0, y_0) = \frac{\left[T_A(r_0)\right]^2}{T_{AA}(0)}$ and $T_A(\vec{r}) = \int dz \rho_A(\vec{r}, z)$

Preliminary Results

Reasonable agreement, but the $dN_g/dy=3500$ is not physical!

Elastic energy loss

Partonic Energy Loss

Radiative 2→N processes. Final state QCD radiation as in vacuum (p+p coll) - enhanced by QCD medium.

Elastic $2\rightarrow 2$ LO processes

Elastic ΔE models predict significant broadening of away-side correlation peak - not seen in the data. Also various models differ significantly in radiative/elastic fraction.

Elastic energy loss

First results indicate that the elastic energy loss may be important M. G. Mustafa, Phys.Rev.C72:014905,2005

• Electrons

$$\alpha_{\rm s} = .3$$

Pions

(1)PHENIX ,PRL. 98, 172301 (2007)

(2) M. G. Mustafa, Phys.Rev.C72:014905,2005

With Different α_s

- α_s is playing a role on energy loss?
 - ✓ how much for radiative and elastic energy loss? ($\Delta E^{\text{radative}} \propto \alpha_s^3$, $\Delta E^{\text{elastic}} \propto \alpha_s^2$ (?))

What is α_s in a QGP?

A. Peshier, hep-ph/0605294

- In BJs collisional loss formula
- (adaption of rel. Bethe-Bloch)

$$\frac{dE_{q,g}^{Bj}}{dx} \sim T^2 \alpha_s^2 \ln \frac{ET}{m_D}$$

- What is α_s in a QGP?
- A fixed parameter?
- Isn't it running?

- •Take running coupling into account $\frac{dE_{col}^{AP}}{dx} \sim T^2 \alpha(m_D)$
- independent of jet energy
- for $T > 1.5 T_C$ considerably larger than previous estimates

Collisional dissociation?

(3)I. Vitev (A.Adil, I.V., hep-ph/0611109), Phys Lett B649 139-146 2007

• Fragmentation and dissociation of hadrons from heavy quarks inside the QGP

Collisional dissociation?

Energy Loss is being understood?

Non-photonic electron v₂ measurement

Non photonic electron v_2 is given as;

Shingo QM06

$$\frac{dN^e}{d\Phi} = \frac{dN^{\gamma.e}}{d\Phi} + \frac{dN^{non-\gamma.e}}{d\Phi}$$

$$v_2^{non-\gamma.e} = \frac{(1+R_{NP})v_2^e - v_2^{\gamma.e}}{R_{NP}}$$
(1)

v₂^e; Inclusive electron v₂=> Measure

$$R_{NP} = (Non-\gamma e) / (\gamma e)$$

=> Measure

v₂ γ.e; Photonic electron v₂

- ⇒ Cocktail method (simulation) stat. advantage
- ⇒ Converter method (experimentally)

Inclusive electron v₂

Shingo QM06

- inclusive electron v₂ measured w.r.t reaction plane
- converter --- increase photonic electron
- photonic & non-photonic e v₂ is different

Photonic e v₂ determination

Shingo QM06

photonic electron v₂cocktail of photonic e v₂

$$v_2^{\gamma.e} = \sum R \times v_2^{decay}$$

 good agreement converter method (experimentally determined)

Non-zero charm v_2 ? (1)

Shingo QM06

- Apply recombination model
- Assume universal v_2 (p_+) for quark

Shape is determined with measured identified particle v₂

P_T (GeV/c) [PRC 68 044901 Charm Zi-wei & Denes]

$$v_2^D(p_T) = a\underline{v}_2^q(\frac{m_u}{m_D}p_T) + \underline{b}v_2^q(\frac{m_c}{m_D}p_T) \rightarrow v_2^e$$

a,b; fitting parameters

 \blacksquare simultaneous fit to $\mathbf{v_2}^{\pi}$, $\mathbf{v_2}^{\mathsf{K}}$ and $\mathbf{v_2}^{\mathsf{non-}\gamma\mathsf{e}}$

Non-zero charm v_2 ? (2)

Shingo QM06

- χ^2 minimum; a = 1, b = 0.96 (χ^2 /ndf = 21.85/27)
- Based on this recombination model, the data suggest non-zero v₂ of charm quark.

Compare with models

- (1) Charm quark thermal + flow [Phys.Lett. B595 202-208]
- (2) large cross section; ~10 mb [PRC72,024906]
- (3) Resonance state of D & B in sQGP [PRC73,034913]
- (4) pQCD [PRB637,362]

Charm quark flows and Bottom seems to in higher pT Charm/Bottom(pT) in the model

HQ Energy Loss and Flow

Radiative energy loss only fails to reproduce v_2^{HF} ? + $\alpha[(2),(3)]$

On progress

Djordjevic, Phys. Lett. B632 81 (2006) Armesto, Phys. Lett. B637 362 (2006

- Two models describes strong suppression and large v₂ simultaneously
 - Rapp and Van Hees

Phys.Rev.C71:034907,2005

- ✓ Elastic scattering: small τ
- ✓ D_{HO} × 2πT ~ 4 6
- Moore and Teaney

Phys.Rev.C71:064904,2005

$$✓$$
 D_{HQ} × 2πT = 3~12

- □ Recall ε+p = Ts at μ_B =0
 - This then gives $\eta/s \sim (1.5-3)/4\pi$
 - Within factor of 2 of conjectured bound

Phys.Rev.D74,0850012,2006

First Look at Continuum in p+p

- e⁺e⁻ pair mass spectrum from Run 5 p+p
 - clearly indicates a signal in the range of $m_{ee} > 1.5$ GeV/c consistent with expectation from Open Charm correlated decays
 - PYTHIA under-predicts the data the same way as for the single lepton cross section
- ☐ Obtained an important reference for comparison with Au+Au results

Continuum in Au+Au

arXiv:0706.3034

- p+p results, scaled by N_{coll} shows a suppression in region dominated by Open Charm
- Observe a sizable enhancement in low mass region

In-medium Enhancement of the dielectron continuum

arXiv:0706.3034

Factor in most central
 DATA/COCKTAIL =
 7.7 +- 0.6(stat.)+-2.5(syst.)+-1.5(model)

Summary(I)

pQCD jet quenching:

- One of the most celebrated results: issues
 - R_{AA} is of limited value for medium tomography
 - need better constraints on medium modeling : γ-h correlation
- Similar suppression pattern of high- p_T electrons from semi-leptonic D and B mesons decays as π^0 ; PRL 91, 172302 (2003);
 - 1. how much elastic energy loss is playing a role?
 - ✓ in addition to radiative energy loss? $R_{AA}^{c-quark} \approx R_{AA}^{u,d}$
 - \checkmark elastic energy loss is well known for π^0
 - 2. α_s is playing a role on energy loss?
 - how much for radiative and elastic energy loss? ($\Delta E^{\text{radative}} \propto \alpha_s^3$, $\Delta E^{\text{elastic}} \propto \alpha_s^2$)
 - \checkmark α_s in the medium ? [A.Peshier hep-th/0605294]
 - 3. how modeling of medium is well known?
 - ✓ Medium tomography: *T. Renk, K. Eskola* hep-ph/0610059
 - 4. kT effect in the calculation is missing?
 - 5. Fragmentation and dissociation of hadrons from heavy quarks **inside the** QGP ? [I. Vitev (A.Adil, I.V., hep-ph/0611109)]

Summary(II)

- Non-photonic electron R_{AA} & v_2 mainly from charm decay was measured @ \sqrt{s} = 200 GeV in Au+Au collisions at RHIC-PHENIX
 - Similar suppression as light quarks at high pT
 - non-zero v₂ is observed
- The data suggest non-zero v₂ of charm quark.
 - Charm quark strongly coupled to the matter
- Model comparison suggests

 - Small τ and/or D_{HQ} are required η /s is very small, near quantum bound.
- First look at the continuum in p+p
- Better statistics [p+p(2006), Au+Au(2007)] + Better Reaction Plane Resolution will provide higher precision data soon.
- Hope for correlation study with larger statistics
- Direct measurement of Charm/Bottom with PHENIX upgrade
 - Direct measurement of Open Charm signal through hadronic D decay channels
 - Direct measurement of Open Bottom through $J/\psi \rightarrow B+X$ decay channel

Backup slides

- PHENIX vs STAR
- Eta/s

Road to the solution in the near future:

- •Direct D meson measurement from PHENIX.
- •Low material run from STAR

The difference is cancelled out when calculate $R_{\rm AA}$

• The two experiment get consistent R_{AA} !!

With Different α_s

Collisional dissociation?

I. Vitev (A.Adil, I.V., hep-ph/0611109)

QGP extent

$$au_{\text{form}}(p_T = 10 \; GeV) - \frac{\pi}{25 \; \text{fm}} = \frac{B}{1.6 \; \text{fm}} = \frac{B}{0.4 \; \text{fm}}$$

• Fragmentation and dissociation of hadrons from heavy quarks inside the QGP

